Slowly inactivating sodium current (I(NaP)) underlies single-spike activity in rat subthalamic neurons.

نویسندگان

  • C Beurrier
  • B Bioulac
  • C Hammond
چکیده

One-half of the subthalamic nucleus (STN) neurons switch from single-spike activity to burst-firing mode according to membrane potential. In an earlier study, the ionic mechanisms of the bursting mode were studied but the ionic currents underlying single-spike activity were not determined. The single-spike mode of activity of STN neurons recorded from acute slices in the current clamp mode is TTX-sensitive but is not abolished by antagonists of ionotropic glutamatergic and GABAergic receptors, blockers of calcium currents (2 mM cobalt or 40 microM nickel), or intracellular Ca(2+) ions chelators. Tonic activity is characterized by a pacemaker depolarization that spontaneously brings the membrane from the peak of the afterspike hyperpolarization (AHP) to firing threshold (from -57.1 +/- 0.5 mV to -42.2 +/- 0.3 mV). Voltage-clamp recordings suggest that the Ni(2+)-sensitive, T-type Ca(2+) current does not play a significant role in single-spike activity because it is totally inactivated at potentials more depolarized than -60 mV. In contrast, the TTX-sensitive, I(NaP) that activated at -54.4 +/- 0.6 mV fulfills the conditions for underlying pacemaker depolarization because it is activated below spike threshold and is not fully inactivated in the pacemaker range. In some cases, the depolarization required to reach the threshold for I(NaP) activation is mediated by hyperpolarization-activated cation current (I(h)). This was directly confirmed by the cesium-induced shift from single-spike to burst-firing mode which was observed in some STN neurons. Therefore, a fraction of I(h) which is tonically activated at rest, exerts a depolarizing influence and enables membrane potential to reach the threshold for I(NaP) activation, thus favoring the single-spike mode. The combined action of I(NaP) and I(h) is responsible for the dual mode of discharge of STN neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of Persistent Sodium Currents Contributes to the Riluzole-Induced Inhibition of Spontaneous Activity and Oscillations in Injured DRG Neurons

In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impuls...

متن کامل

Riluzole-induced oscillations in spinal networks.

We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts su...

متن کامل

Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons.

Subthalamic neurons drive basal ganglia output neurons in resting animals and relay cortical and thalamic activity to the same output neurons during movement. The first objective of this study was to determine the mechanisms underlying the spontaneous activity of subthalamic neurons in vitro and to gain insight into their resting discharge in vivo. The second objective was to determine the resp...

متن کامل

Slow spike frequency adaptation in neurons of the rat subthalamic nucleus.

Neurons of the subthalamic nucleus (STN) are very sensitive to applied currents, firing at 10-20/s during spontaneous activity, but increasing to peak firing rates of 200/s with applied currents <0.5 nA. They receive a powerful tonic excitatory input from neurons in the cerebral cortex, yet in vivo maintain an irregular firing rate only slightly higher than the autonomous firing rate seen in sl...

متن کامل

Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration.

The ionic mechanisms by which dopamine (DA) regulates the excitability of layers V-VI prefrontal cortex (PFC) output neurons (including those that project to the nucleus accumbens) were investigated in rat brain slices using in vitro intracellular recording techniques. DA or the D1 receptor agonist SKF38393, but not the D2 agonist quinpirole, reduced the first spike latency and lowered the firi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 4  شماره 

صفحات  -

تاریخ انتشار 2000